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In this paper a new approach to metastability for stochastic dynamics is 
proposed. The basic idea is to study the statistics of each path, performing time 
averages along the evolution. Metastability would be characterized by the fact 
that the process of these time averages converges, under a suitable rescaling, to a 
measure valued Markov jump process. Here this convergence is shown for the 
Curie-Weiss mean field dynamics and also for a model with spatial structure: 
Harris contact process. 
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1. I N T R O D U C T I O N  

A large class of the rmodynamica l  systems undergoing  a phase t ransi t ion 

exhibits the p h e n o m e n o n  of metastabil i ty.  Let us consider, for example, a 

ferromagnet ic  system below the critical temperature.  If we start from an  

equi l ibr ium state when the external  magnet ic  field is h = 0 + (one can think 

to prepare this state by slowly switching off a positive magnet ic  field) a nd  if 
we let it evolve, after having  in t roduced a small negative magnet ic  field, 
then we observe that the initial  s i t ua t ion - -which  is characterized by  a 
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positive magnetization--persists for a long (macroscopic) time. In other 
words, the system instead of undergoing the right phase transition, remains 
for a long time in an apparently stationary situation until some external 
perturbation or some spontaneous large fluctuation will "nucleate" the new 
phase, starting an irreversible process leading the system to the true 
equilibrium phase, with negative magnetization. 

In this paper we consider the metastability as a dynamical phenome- 
non that occurs in a very general situation. We can describe this phenome- 
non in the following way: we have a stochastic process with a unique 
stationary probability measure, but if the initial conditions are suitably 
chosen then the time to get to the asymptotic state becomes very large, and 
during this time the system behaves as if it were described by another 
stationary measure; finally, and abruptly, it goes to the true equilibrium. 

One possible point of view on metastability is that of the "evolution of 
the ensembles." It consists in giving prescriptions to construct a state, that 
is, a probability measure on the configuration space, which should describe 
the statistical properties of systems in a metastable situation. Then, to study 
the dynamics of metastability one can consider the time evolution of the 
probability distribution on the configurations, starting with the "metastable 
state." In this framework one gives the following dynamical justification for 
the choice of a given probability/~ as the correct one to describe metastabil- 
ity: the average values of the physical observables with respect to the 
probability distribution at time t are very slowly varying functions of t for 
suitable values of the thermodynamical parameters. Also, starting from an 
initial distribution different from ~, the time evolution of the average values 
is expected to exhibit a rapid variation toward the quasistationary (slowly 
varying) situation. (See Refs. 2, 10, and 11.) 

In this paper we take another, different, point of view, which could be 
called the "pathwise approach." We consider single typical trajectories and 
study their statistics in the most natural way, i.e., we perform time averages 
and try to detect the behavior just described; namely, we try to see if the 
time averages over almost all trajectories are practically stationary for a 
very long period, until some large fluctuation will lead the system to 
another, completely different situation. 

One important remark must be made: typically the time until the large 
fluctuation occurs has a very wide distribution. Thus if we look at the time 
evolution of the averages with respect to all trajectories, what we usually see 
is a smooth behavior, even though every single trajectory has a very sharp 
behavior. The reason why the averages over all trajectories approach the 
equilibrium very slowly is related to the fact that the time to the large 
fluctuation is very large. 
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Then, it is clear that by looking only at the time evolution of the 
probability distribution, it is very hard to distinguish between the kind of 
behavior of a single trajectory as described above and another, completely 
different behavior: a smooth, very slow evolution toward the stable situa- 
tion. This last one has nothing to do with metastability. Nevertheless, we 
stress again that in the approach based on the evolution of the ensembles, it 
is difficult to catch this difference. 

To get an intuitive picture of what happens in the class of models we 
study here, let us consider a diffusion of a particle in a random medium 
(Brownian noise) with a drift given by - d a ( x ) / d x ,  where a(x) is given in 
Fig. 1. (This is in fact a continuous version of the first model we consider.) 
For an initial condition x < x 0 the particle is driven to x~, and under the 
action of the medium it starts oscillating around it. This is so until a large 
fluctuation lets it jump beyond the barrier at x 0. Then, the drift leads it to 
the absolute minimum x 2, where it will start oscillating again until a new 
fluctuation brings it back to the first region. The smaller is the diffusion 
coefficient, the larger the time spent before the first jump. 

There are two crucial quantities: the exit time from the region of the 
local minimum Ta, and the "time of thermalization" ~-, i.e., the typical time 
between two consecutive passages through x l. For very small diffusion 
coefficient we have ~- << T~, as it is well known ( 12~ and as we shall explicitly 
show in our examples. The main feature of these processes is the relevance 
of the large fluctuations: the actual transition from one oscillating center to 
another is not due to oscillations that gradually get larger and larger, but to 
an abrupt motion against the drift. 

To make this picture more precise we will describe these kinds of 
phenomena in some limit case, where the transition from one region to the 
other can be made particularly sharp. We shall show in our examples that 
letting T~ ~ + oo together with the length of the intervals over which we 
take time averages, and by properly rescaling the time these measure- 
valued processes converge to a measure-valued Markov jump process. This 
also allows us to single out the two main regimes. 

It is important to stress that the Markovian property of the limit 
process, i.e., the exponential distribution of its jump time, reveals the 
impredictability of the transition from one regime to the other. In fact, this 
impredictability together with the statistical stability of the system before 
and after the jump may be taken as the basic features of the metastability 
phenomenon. 

What we have described in the last paragraph is in fact a new proposal 
to describe metastability in stochastic models. In this paper we verify this 
kind of behavior in two different models: the first is the Curie-Weiss model 
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which, in spite of its inconsistency as a statistical mechanical  model, is 
traditionally considered the first test for new ideas in this area. The  second 
is the basic contact  process of Harris  (on 71), that has an extra interesting 
point, which is its spatial structure. 

, METASTABLE BEHAVIOR OF THE C U R I E - W E I S S  MODEL 

Let us consider a system of N Ising spins a i E ( - 1, + 1 ) described by 

where 

Z N = ~ e -nu~(-~) (2.3) 
a N ~ ( - - 1 , + l )  u 

and fl is the inverse temperature.  F o r  simplicity we shall choose J = 1. If n 
is the number  of positive spins in the configurat ion ON, we have 

(2n - N )  2 
HN(~N)  = U(n)  = 2 N  h(2n  - N )  (2.4) 

Thus, under  the Gibbs measure,  the probabil i ty of having n positive 
spins, according to (2.2), is given by 

1 ( N ) e - ~ V ( . )  (2.5) 
PN(n)  = -~N n 

As in Griffiths, Weng and Langer  (7) we consider a time evolution for 
our  system in terms of a Markov chain in discrete time. The transition 
probabilities { Qm,n } will be given by 

~ l l) On,n+l -- ~ e x p  - ~- [ 8 u ( n  + 1) - ~tN(n ) 

a r N Q.,.-I = ~ e x p / -  - ~ [ S N ( n  -- 1 ) -  8N(n)J / (2.6) 

Qn,~ = 1 - Q . . + I -  Q. , . - I  

for n = 0 . . . .  , N except that Qo,-1 -- QN,N+I = 0, where 

1 

the Hamil tonian  

- J 2 ~ 1 7 6  h ~ i a i -  J (2.1) H N ( C r N )  = N i < j  " 

where o" N = ( (71  . . . . .  ON). The Gibbs distribution for such a system is 

1 -/~H~(~N) (2.2) V(aN) = -~U e 
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It is immediately seen that PN [given by (2.5)] is the unique invariant 
probability for this chain. 

Now, introducing the "magnetization" variable 
N 

1 2 n  - U (2 .8 )  x=ff ~]o,- 
i = l  N 

we define, for x E [ -  1, 1], aN(X ) = ~N[(Nx + N)/2] .  
It is easy to check that 

lira aN(x ) = a ( x ) =  - f l  7 +hx + ~ l o g  

+ (  1 2 ~ x  )log( ~ ) (2.9) 

and that 

( )  o 1 (2.10) aN(x) = a(x) + - - ~  + - S  

where v is a continuous function on [ - 1 ,  1]. The graph of the function 
a(.) = a(fl, h, .) for fl > 1, with h positive and small is given in Figure 1, 
where x~, x 0, x 2 are the solutions of the equation 

x = tanh[ fi(x + h)] (2.11) 

From now on we shall assume that f l > l  and 0 < h < [ ( f i - 1 )  
/fi]l/2 + (1/fl)log[ fl 1/2 _ (/7 - 1) 1/2] so that we have the picture as given 
in Fig. 1. 

From (2.6) and (2.10) it is clear that for large N, the time evolution of 
our system is that of a one-dimensional random walk between two reflect- 
ing barriers whose drift is given, roughly speaking, by -(d/dx)a(x).  

! | 

X I X 0 X 2 1 

I 

- 1  

Fig. 1. 
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Before stating our results we give some definitions. If N is an integer 
/> 2 let 

f~N= - - 1 , - - 1 + ~ , . . . ,  ~ , 1  

Let ( ~ N ( t ) ) t ~ N  be a Markov chain (M.C.) with values on ~2N, with 
transitions 

P i N ( l - t - l ) = - - 1 +  = - - 1 + ~  = Ql,,~ 

where the Qt, m are given in (2.6). Usually we put an upper index to denote 
the starting point, i.e., (~(t))t~>0 denotes the previous M.C. with ~ ( 0 ) - -  
- 1 + 2 n / N ,  n = 0 . . . . .  N.  For convenience we may take these processes 
defined on (~U) ~, the space of all trajectories. 

The unique stationary probability measure will be denoted by/z N. 
We denote by io(N ), il(N), i2(N) and i , ( N ) ,  respectively, the integers 

such that 

2t~(U) 2(/j(N ) + 1) 
- 1  + - - - - ~ - -  < xj < - 1  + N for j = 0, 1,2, and 

(2.12) 

(2.13) 

where 

In other words, the process ~ has the same transition probabilities as 
to the left of - 1 + 2 i , ( N ) / N  and we have introduced a reflecting barrier 
at - 1 + 2 i , ( N ) / N .  Obviously, all these processes may be constructed in 
(~2N) N in such a way that if we start at the left of - 1 + 2 i , ( N ) / N  

~ ( t )  = ~v( t )  V t  < TL.(N) (2.15) 

m 

QI,,, = Qt, m if l < i , ( N )  - 1 

Q i . ( N ) , i . ( N )  -- 1 = Q i . ( N ) , i . ( N )  -- 1 

Q i . (  N) , i . (  N)  = 1 - Q i . (  N) , i . (  N ) -  I 

2 i , ( N )  1 2 ( i , ( N )  + 1) 
- 1 + ----N-~ < x~ + ~ / - g < - l +  N 

where x l, x2, and x 0 are, respectively, the local minimum, the absolute 
minimum, and the local maximum of the function a( .) .  Also, let us call 

- n  (_~N(t)),>~O the M.C. on ( - 1, - 1 + 2 I N  . . . .  - 1 + 2 i , ( N ) / N )  such that 
~ ( 0 )  = - 1 + 2 n / N  (n < i , (N) ) ,  and transitions 

e ( ~ ( t ' b l ) = - - l ' k - ~ - - ~ l ~ v ( t ) = - - l q - ~ ) = Q _ . l , m  (2.14) 
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where 

I Ti~= in f  t />01~ ) ( t ) = - l + - ~  

Let us call FN the invariant probability measure for ~. 
Notations: (1) T ff denotes TiN(N),g,(N). 
(2) ~1([--1,  +1]) denotes the space of probability measures on 

[ -  1, + 1] with w* topology. 
(3) If S is a metric space D([0, + oo), S) denotes the usual Skorohod 

space.(~) 
(4) ~ is defined as in (2.16), but for the process ~. 

The Results 

Given integers R /> 1 and N /> 1, we define the following empirical 
process of time averages: 

[s+R] 
1 Aft(s, .) = ~ ~ 6~X),N,(k),('), S /> 0 (2.17) 

k=[s]+  1 

where 8 x (-) denotes the unit mass at x. 
We can state the following: 

Theorem 2.1. There exists a sequence of numbers RN,~- t -  ~ such 
that the processes (AN(sET~, ")),/>0 converge in law on D([0, + ~ ) ,  
g)21[- 1, 1]), as N ~  m, to a jump process (A(s, "))s>~O given by 

= / 6 x ,  if s < T 
A(s, 9 ) 

~ 6 x 2  if s>~T 
where T is exponentially distributed, with mean 1. 

Theorem 2.1 will be a consequence of the next proposition together 
with Theorems 2.2 and 2.3. 

Proposition 2.1. As N-~ + oo the random v a r i a b l e s  TN(N) i (N)/ 
ET~iu),i.(w) converge in distribution to an exponential distribution*with 
mean 1. 

Theorem 2.2. Letting R N = E(T~)/N, and l} = m a x ( / E  N : l t~ u 

TAN), and defining, for all E > 0, all interval J = [a,b] C [ -  1, 1] such that 
x 1 E (a, b), the e v e n t  I" u as 

FN=[l~=O] UIl~v >>-1, supJAN (IRN,J)--II ~ ~J 
l < l~l N 
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Then 

P ( F N ) ~  1 as N--> + o0 

Cassandro et al. 

Remarks. (1) Proposition 2.1 implies, in particular, that P[I} = 0] 
~ 0 ,  so that P[I~ > 1, supt<t~lA~(lRN,J)-11 < e] converge to 1 as 
N---> + oe in Theorem 2.2. 

(2) Defining R/V = rNR N with R N as in Theorem 2.2, and r N > 1 integer 
such that, as N ~  + ~ :  (a) rN---> +Oe; (b) R/v /ETf f~O [and so P(T ff 
< R/v)--->O, by Proposition 2.1], we can say that for J as above; 

P[ TN > R/V , /<';~sup [A~h(IRN,J)-  I] <~ r N-,+oo) l 

l~N 

where l/v = i n f { / ~  N : ( / +  r N -- 1)R N < TaN < (l + rN)RN}. Thus, since 
R N / R/V --> 0 we get 

P[T N > R/v, sup I A ~ ( s , J ) -  11 < r >1 
k s <[ Tflc- Rfv ] J N--> + e,o 

Clearly, such a sequence can be found. Actually, since Theorem 2.2 works 
equally well for R N ~- E T a N / N  2 w e  may take Riv = ETff /N ,  by previous 
considerations (i.e., the same choice made in Theorem 2.2). Same remark 
applies to what we do in Theorem 2.3 and 3.3 and their applications to the 
proof of Theorems 2.1 and 3.1. 

In the proof of the previous theorem we shall need the following: 

Lemma 1. Let us consider the process ~ defined by (2.14). Then, for 
all J = [a,b] C_ [ -  1, 1] such that - 1 + [2il(N)]/N ~ (a,b), for all I, for all 
c > 0, and T > (4/e V ?N/2) 4, the following inequality holds: 

[ 1 _ ) ] 

const[ E(~,i,(N)) + 4rrN O N 
eT + ~vTl/-------5 + ~N r 

(2.18) 

where ~s = ~s f"l ~N) ,  ~N ~" E(~ ' , (N) , i , (N) )  is the mean  recurrence 
time at il(N), ~N = E(Ti,(N).i,(N)) 2 and Ij( ')  is the characteristic function of 
the set J. 
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Remarks. 
(2.18) we obtain 

(1) Applying the results of Lemma A1 to the inequality 

[ , T  , ]  ( ) 
P -~t~=oIg(~lN(t))--~N(J >e < C,eC~N~/~ 7 .~+  (_ ~ 1  1 + ~ 1  

(2.19) 

(2) Sometimes we omit the lower index N, and we write /~, r, o, 
etc . . . .  

Proof  of  Lemma 1. Let us consider the trajectory ~ ( t )  for 0 < t 
~< T. Let n T be the number of returns to - 1 + [2il(N)]/N and let Pi be the 

N time of the ith return with P0 = Tlj~(u)" For all trajectories such that O0 4 T 
we can write 

T Po 

E Ij(~s E I s (~ ( t ) )  
t = 0  t = 0  

nT Pi T 

+ ~, E IJ(~ZN(')) + ~, I ,( t~(t))  (2.20) 
i = 1  t = P i _ l +  l t=PnT+ l 

Thus, we have this sum where n r and the Pi'S a r e  random variables (if k = 0 
k ~ =  i -- 0 by convention), and we get 

1 T _ _ ( J )  ] 

I [T nT 
<P -T>a +P - - T - > a  

I 1 nr Oi ~N(J) ] 
+ P -~ • Z Ij(~/v(t)) - > e /2  (2.21) 

i = 1  t = P i _ l + l  

The last term on the right-hand side of Eq. (2.21) is bounded by 

P[lnT-  T/§ > T 3/4] + 
[ T/e + r3/q 

E 
n = [ r/e - r 3/4] 

e • E 6 ( t ; ( 0 ) - - - r  > ~r n~=n 
n~ 2n~ ' ?'/'~ i = 1  t = p i _ l + l  

(2.22) 
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Then, since n~ - T 3/4 <. T <<. n~ + T 3/4, if T > (4/E) 4 we have that for 
all n in this sum, the corresponding summand is bounded above by 

P nl -~1 ~, Is(~/v(t)) - glv(J) > e /8  (2.23) 
i=l t=pi_l+l 

where we have also relaxed the condition n T = n, so that O, is not con- 
strained to be less or equal to T anymore. Since [~u(t) = - 1 + 2il(N)/N ] 
is a recurrent event which is persistent we have 

E(nr ) = T__ Var(nr ) = T ~ / ~ 3  
,7- 

Moreover, as it is shown in Lemma A2: 

N Th(,'v),it(~) 

E ~ Ij(~)(N))=~N(J ) 
t = l  

Therefore the following inequalities hold: 

P[Oo/T > e l 4 ]  < 4ET, N(N)/Te 

P[(T-  Onr)/T > el41 <. 4;r/Tc 
P[Inv- V/~l > V 3/4] < ~/;r3T 1/2 

and 

p 1 ~. II(~}'(N) ) - > e /8  < 648/n~Ze 2 
i = 1  "~ t = p i _ t +  1 

Thus, for T > (4 /e  V ~/2) 4, we get 

ETI, iI(N) ~ 
< c ---~C-c +-Ucc + - -  ~3TI/2 ~2 TI/4 

for some constant C. Also, by Lemma Al it is easily seen that 

ET/,~I(N) < CleX p N a ( - l + ~ ) - a  

<. Clexp(C2 N3/4) 

(2.24) 

(2.25) 

where CI ,C 2 are positive constants. Moreover, by Lemma A3 we get 



Metastable Behavior of Stochastic Dynamics 613 

analogous estimates for e and e so that we may also write 

for some positive constants Cl, C2, as claimed in (2.19), [] 

# 

Proof of  Theorom 2.2. Given e, J,  N define the event 

[ (/+I)RN1 1 ~ ] B,= RN X Ig(~;(N)(t)) - e , l = 0 , 1  . . . .  
t ~ IR m 

For any positive integer K we have 

L=I O<I<L-1 

where 

(2.26) 

~> e[z~=0]  + 
K 

~,, P(lTv= L ) ( 1 -  L sup P(Bf]l~v= L)) 
L=I I < . L - 1  

[ B [ =  
( l +  I ) R  N 1 ] 1 X ~,(~;;'~Nl(t))- ~>~ 

- ~ N  t = IR N l 
and we have used (2.15). Thus, to prove the theorem we have to show that 
for the R N given, there exists K~v such that the following conditions are 
satisfied: 

(i) K N R N / E r U  ~ ~ + N--.'. + ~xz 
(ii) Ku 2 sup P ( B [  ) - - - - ~ 0  

O< I < KN N--~ + wo 

and this can be easily done, choosing K N = N 2. In fact with this choice (i) 
is trivially satisfied and for N sufficiently large: 

(a) ]~N(J)  -- 11 < e//2 if x ~ ( a , b )  

as we can easily see, and 

1 ~, ig(~](Nl(t))_ >e//2 (b) e ~ ,=,R~ 

N e x p { -  N - ]} < C,exp(C2N3/4) �9 -~ -~ [a(Xo) a(x,) 

where we have used Lemma 1 for T = /{N,  and we have expressed ETa u by 
means of the leading term given by Lemma A1 [see (2.26)]. [] 
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In order to describe the behavior of our system after the first passage 
through the point - 1 + 2i*(N) /N we notice that 

N P( Ti.(N),i2(N ) < Ti.(N),io(N))--------)1 (2.27) 
N--) oo 

as a consequence of Eq. (AI'). 
Then, using again Eq. (A1) and Chebychev's inequality, it is very easy 

to see that 

P (  ~ >0 (2.28) Ti.(N), i2(N) > N21 N 

Now for a given [(N) : io(N ) < [(N) < i2(N), that will be chosen later, 
we introduce a new Markov chain ~ ( t )  on ( - 1  + 2 [ ( N ) / N , . . . ,  1 - 
2IN,  1) with g~(0) = - 1 + 2 n / N  and transition probability given by 

P ~ ( t + l ) = - l +  ~ ' = - l + ~  

with 

O_,m=Q,m if Z>/ i (N)+I 

QT(N),7(N) + l = Q[(N)d(N) + 1 

and 

Of( N),[( N) - 1 = 0 

O[(N),[(N) = 1 -- O[(N),[(N)+ I 

That is, we introduce a reflecting barrier at [(N). 
Now we specify the choice of the auxiliary point [(N). It has to satisfy 

the following requirements: 
(1) The time averages on the time interval RN = E T N / N  are stable 

during the typical times to reach [(N) starting from i2(N ). 
(2) 

E T i 2 ( N ) j ( N )  

E T ~q N ---> c~ 

It turns out that a possible choice for [(N) is the following: 

/ ( N ) :  NET~ <~ ETi2(N),'[(N) ~ N2ET~ 

Theorem 2.3. Ve > O, VJ = [a,b] such that (a,b) ~ 1 - 2i2(N)/N if 
we define for R N = ET~N / N 

l** = inf{ 1 /> 0 : IR N ~ Ti2(N),i(N) < } 
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and 

]~(N) = ( / * * =  O} U 

Then 

{ ' ', -' l }  
>~ , < , . .  RN ,=,R,, b(~,~N>(O)-1 < ,  

)1. P ( F N )  N-->~ 

Proof. Following the same lines and using the same notations of the 
proof of Theorem 2.2 we define 

~ 1 ~ .  
8 ; =  ~ , =  - > ,  

and we show that for K N = N 4 the following conditions are satisfied: 

( i )  K N R N / E T i z ( N ) ' f ( N )  N-+er 

(ii) K 2 sup P(B[) )0 [] 
l< RN N-->~ 

Remark. As in the case of l}, we can see, as a consequence of 
Proposition 2.1 and Lemma A1, that P ( / } * = 0 ) ~ 0  as N ~ + o e ,  for 
previous choice of R u . 

Proof of Theorem 2. 1. For the moment let us assume Proposition 1 
is already proved, and let us see how to deduce Theorem 2.1. 

From Proposition 2.1, Theorems 2.2 and 2.3, and Eqs. (2.27), (2.28) we 
deduce quite immediately that for each continuous function f on [ - 1 ,  + 1] 
the processes (A~(sET N, f ) ,  s/> 0) converge in law on D([0, + ~) ,  [ -  IIfll, 
[]fH]), to a jump process (Xs(f), s/> 0), given by 

Xs(f) = f ( x , )  if s < r 

=f(x2) if s/> T 

where T has an exponential distribution with mean 1. [Remark: Notice that 
ETi2(N),io(N)/ETiI(N),i.(N ) ---)-k-oO as N ~  + ~ and this is why we do not 

see any return to x] .] 
But the situation is as follows. We have a family (X N, s ~> 0), N /> 

1 of real-valued processes with paths in D([O,+oo),[-M,M]) ( M =  
SUpxlf(x)l ), verifying the following: there exist random variables ~-U ~ con- 
verging weakly to a unit mean exponentially distributed random variable, 
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and random variables ~N ~ 0, T 2 ) ,7.1 with z 2 e ) + m and ~N P - -  ~' 0 ,  

and there exist a , /3  E R such that for all e > 0 

P[ sup ,XU-  a[ > (]--~O 
s < .r 1 

as N--> + o0. [Here we are using Theorems 2.2 and 2.3 together with 
previous remarks that, by Proposition 2.1 we get P(l~v = 0)--~0 and P(l~v* 
= 0)--> 0 in those theorems, as well as Remark 2 after Theorem 2.2.] 

In fact, in this situation, conditions (i) and (ii) of Billingsley (l) are 
easily verified, ensuring tightness on D([0,b], R) for each b > 0. 

Now, we can argue as in Ref. 4 to obtain tightness of the family 
(A~(sET~), 0 < s < b) on D ( [ 0 , b ] , ~ t [ - 1 ,  +1]), for each b > 0. Then 
identification of the limit is very simple. [] 

Therefore, what we must do is to prove Proposition 2.1. 

Proof of Proposition 2.1. It  consists of two steps. Let S N = 

Tff/ET ft. Then, (a) if S is the weak limit of some subsequence (SNk)k>~,, it 
verifies 

P ( S > t + s ) = P ( S > t ) P ( S > s )  for all s , t > 0 .  

(b) The family (SN, N >> 1) is uniformly integrable. [] 

Remark. Proposition 1 follows at once from (a) and (b) above. 

Now, (b) can be verified through Lemma A1 and analogous calcula- 
tions for E(TN) 2, which can be used to see that E(TN)2/(ET~) 2 remains 
bounded as N---> + ~ .  

For the proof of (a) let us recall that for the process ~N we have 

sup ETIN, G(N) ~ CI eC2N3/4 
l < i . ( N )  

for some constants C1,C 2. Thus if we take a N = e N', where 3 / 4  < ~, < 1, 
we have 

sup --U ETt,~,(N)/~--)O as N---~ +oo 
l< i.( N) 

Now, if s, t > O, defining 

t / =  inf{u >/ sET N :~u(U)=j) 
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if N is large enough so that ol N < [tETN], we get 

e(ti~(N ) > sETa N -[-aN,  T 2 >(s-1-t)Era N ) 

"[sErN+ ~N] ] 
= P Z I{i,(N))(~N(U)) = O, r u > ( s  + t ) E r  u 

, = [sErJ ] 

bevy+ ~1 l 
<~P Z I ( i ~ ( N ) ) ( L ( U ) ) = O ' T N > ( s + t )  E f u  

U = [sETa N ] 

.< sup > aN) 
l < i.(N) 

which converges to zero as N ~ + ~ (by Chebychev). Thus, if s, t > 0, 

P [ T  ff > ( s  + t )ET  f ]  - P [ T  N > ( s  + t ) E r f ,  ti~(u, < ,ETN + aN 1 

goes to zero as N ~ + •. But this last term can be written 

[sETN +~N] 

E 
k = [seT2 l 

• rN >(~ + 0ErNI rN > k, t , ~  = h l 

which (using the strong Markov property) is bounded above by 

e ( r  2 > s E t  2 ) e ( r  N > t E r  N - a ~ )  

and bounded below by 

P ( T  2 > sET 2 + a N , ti~(N) < sET 2 + aN)P(T  2 > t E r  N ) 

Since aN/ETN-->O, these facts clearly imply (a) because as above, 

e (  r y  > "ETN + ~N)-- P(TN > sET N + aN , tSit(N ) < sET  2 + aU)--~O 

3. METASTABLE BEHAVIOR OF THE CONTACT PROCESS 

3.1. Definition of the Process 

The basic one-dimensional contact process (as defined by Harris) is a 
continuous time Markov process taking its values on the set ~(Z) ,  of all 
subsets of Z. It can be described informally as follows: particles are 
distributed in 7/in such a way that each site is either empty or occupied by 
at most one particle. ~(t) denotes the set of occupied sites at time t. 
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The (stochastic) time evolution can be described as follows. Each 
particle disappears after waiting a random time exponentially distributed 
with mean 1, independently of the behavior of the others. Before disappear- 
ing each particle keeps trying to create new ones at the neighboring sites, at 
random times distributed as a Poisson point process with parameter 2X, 
where X > 0. More precisely, each particle waits a random exponential time 
with mean 1/2X, independent of everything else, and then it puts a new 
particle in one of its nearest neighbors, chosen with probabilities 1/2, 1/2, 
and so on. At each of these creation times, if the chosen site is already 
occupied nothing happens. 

Following Harris (9) we will construct the contact process with the help 
of a random graph in the "space-time" diagram 7/• ~+. For each i E 
7/ consider three independent Poisson point processes on R+: ( ~ ) n ~ ,  
(u with parameters k, k, and 1, respectively (i.e., the random 
variables ~ , ~  - ~ [ , . . . ,  ~+  L -  ~ , .  ~. are independent exponential ran- 
dom variables with mean 1/X, etc.). We suppose that for i varying in Z the 
processes are all independent. 

Now, for each i E g we draw arrows from ( i ,~)  to (i + 1,~), from 
(i,-/~) to (i + 1, ~), etc. Secondly, we draw arrows from (i, u to (i - 1, ~[), 
from (i, ~ )  to (i - 1, ~),  etc. Finally we put down + signs at each of the 
points (i,~'~), n - - 1 , 2 , . . . .  (For this graphical construction, see also 
Ref. 5.) 

Given two points (i,s) and ( j , t )  in the space-time 77 • R+, with s < t, 
we will say that there is a path from (i,s) to (j, t) if there is a chain of 
upward vertical segments and arrows in the random graph we have just 
constructed, leading from (i, s) to (j, t), following (horizontally) the direc- 
tion of the arrows and without passing (vertically) through a + .  

Now, given A E ~(77), we will define the process (~ ( t ) ,  t >/0), start- 
ing at A, in the following way: 

U (0) = A 

and for t/> 0, ~A(t)= ( j  ~ 7/: there is a path from (i, 0) to ( j , t ) , for  some 
i ~ A } .  

(A glance at Fig. 2 may help in understanding the definition of the 
process. For more details see Harris (s) and Griffeath. (4) 

Exactly in the same way we can define contact processes taking values 
on ~ ( { - N , - N +  1 . . . .  }) or on ~ ( ( - N , - N +  1 . . . . .  N -  1,N}), 
where N is a positive integer. In the first case it is enough to take Poisson 
point processes indexed by i/> - N and, for i = - N, to consider (~- N),~> 1 
and (~\-N),>~ l (i.e., a particle at site - N  can only create new particles at 
site - N + 1). The contact process with values on W({ - N, - N + 1 , . . .  }) 
is denoted by (~I_N,+o~)(t))t>~0. Now, in order to define a contact process 
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on ~ ( (  - N ,  - N  + 1 . . . . .  N - 1, N ) )  we consider only Poisson point pro- 
cesses indexed by i = - N  . . . . .  N; for i = - N  we only take (~',-N)n~> ] and 

(~-+,, N)n~>l, and analogously, for i = N we only take (%~N)n>1 and (%+N),~>I. 
The process defined in this way will be denoted by fu(t) ,  t/> 0. In all cases 
the upper index will indicate the initial configuration [i.e., iN A (0) = A ]. 

An enormous amount  of results have been produced about the contact 
process since the pioneer paper  by Harris (8) was published. A quite exhaus- 
tive review can be found in Griffeath, (6) which contains most of the facts 
about the process which will appear  in the proof of our theorem. Here we 
just indicate a basic ergodic result which we shall use to enounce this 
theorem. 

It is obvious that the probability measure concentrated at the empty 
set 8 0 , is invariant for the contact process. Now, there exist )k, such that if 
)t > ?t. then, as t ~  + oe, the law of ~z(t) converges weakly to a different 
probability measure/L, which must be invariant for f. Also the same thing 
happens for f [ - u ,+ ~ )  and we denote by /~[-u.+oo) the corresponding 
invariant measure. This probability t~ (resp. /x t -U,+ ~)) gives mass zero to 
the set of finite subsets of Z ({ - N, - N + 1 . . . .  } resp.). In particular 6 o 
and t~ (as well as 6 o and/~[-U,+~l)  are mutually singular. 

RomarR.  It  is known (see Ref. 3) that ~ and f[-U,+~) have the same 
critical parameter  ?t.. 

3.2. The Results 

The process iN(t),  t >1 0 has only one invariant probability measure 
(which is 6e), for any value of X. (This is a quite elementary fact since iN(t) 
is a Markov process, with values on a finite set, in which it is always 
possible to go from any state to any other, except for the empty set, which 
is a trap.) Nevertheless, if ?t is big enough, and if we start the process with a 
configuration with most of the sites occupied, then for a long time the 
process will behave as if it were (statistically) in equilibrium with distribu- 
tion /~ restricted to { -  N . . . .  , N ) ,  where /~ is the nontrivial invariant 
distribution corresponding to the contact process on ~ ( Z )  with the same 
birth rate X. The point is that/~ restricted to { - N . . . . .  N } is not invariant 
for ~u(t), t >1 0 and what happens is that waiting long enough we will 
suddenly see the system changing completely its statistical behavior, the 
frequencies becoming stable around the real unique invariant distribution 
of the finite contact process, i.e., 6 o . This is what we shall call metastable 
behavior of the contact process, as discussed in the Introduction. 

Now we will enounce precisely our results, which are analogous to 
those obtained for the Curie-Weiss model, in Section 2. In order to do this, 
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instance, ~(4 N,+~], 
~tA U,+~l(0) = A. Let 

we need to introduce some new notations. First we remember that the 
upper symbol in the notation of the process indicates its initial value. For 

t/> 0 means the process ~[-u,+~l  starting with 

T A = in f ( t  > 0 :~A(t) = 0} 

T~ = in f ( t  > 0 : ~  (t) = O} 

We will omit the upper symbol when the process starts with the full 
set, i.e., ~(0) = Z, ~N(0) = { -  N . . . . .  N}, etc. Also, 

T N = inf ( t  > 0 : ~ N ( t )  = 0}, etc. 

If A = (x} we write ~x, T x and so on. 
A cylindrical f :  ~ ( 7 / ) ~  • is a function such that there exists a finite 

set B C_ 7/so that f ( A )  = f (A  N B) for all A E ~ (Z). The smallest such B is 
called the basis of f. 

Given a real number R > 0 we define, for N = 1,2 . . . .  , the measure- 
valued process (AN(s), s >/ 0) given by the following empirical distribution: 

1 r s + R  
A N (s, ") = ~ Js 6~u(,)(" )dt  

Ts denotes the space of probability measures on M(Z), with its 
weak* topology (~(71)-- (0, 1} Z with product topology, and Borel o field). 
The processes A N have paths in D([0, +m) ,gXl (~ (Z) )  ) and the conver- 
gence in the next theorem means convergence of the probability measures 
in this Skorohod space, with its usual topology and Borel o field. 

In the next proofs we shall use ~, ~t-u,+~) to denote the corresponding 
contact processes constructed~ with arrows pointing to the right only. It is 
known that ~ and ([-N,+~) also present critical phenomena; the critical 
parameter will be denoted by X,. Remark: X, >1 X,. 

In the following theorems we would like to substitute X, by X, and we 
conjecture that this can be done. [It depends on our proof of (3.12) in 
Theorem 3.2.] 

We can now state the following: 

T h e o r e m  3.1. If )t > ?,, there exist increasing sequences of real 
numbers (RN)N>~l such that the processes (AffN(sETN, .), s >1 0)) converge 
in law, when N ~ + m, to a jump Markov process (A (s, -), s/> O) given by 

/z if s < T  
A ( s , . ) =  6o if s/> T 

where T is a random time which has an exponential distribution with 
mean 1. 
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This theorem will follow, as in the case of the Curie-Weiss model 
(Theorem 2.1), from the following results, which are stated and proved 
next. 

Theorem 3.2. If ~ > ~, ,  then T N / E T  u converges in distribution, as 
N ~ oo, to a unit mean exponentially distributed random time. 

Theorem 3.3. ~ > f~,, there exists an increasing sequence of positive 
real numbers (RN:N >/ 1) such that (i) RN/ETN----~O as N o  + ~ ,  and (ii) 
for all E > 0, and all f cylindrical on ~ (]v), 

P (  max IA x (IRN, f) - t~(f)l > E, ku > 0] 
~ O < I ~ K  N N ] 

where K u = max{ l >/0 : I R  N ( T N },  

Proof  o f  Theorem 3.2. We first show (i) for all s > 0, t > 0 

lim P[ T u / f i  u > s + t I -- P[ TN/f lN > s IP[  TN/ f i  u > t] = 0 
N'--~ oo 

where f i n  is defined by P ( T  N > fiN) = e-1, and 

(ii) lim fin __> I 
N-~'oO E T  N 

To prove (3.1 a) let us start considering that 

e[  rN/fiN > s + t] 

= E 
A C ( - N  . . . . .  N }  

Av~O 

-- ~,, P [ T N / f i N > S + t I ~ N ( f i N S ) = A ]  
A C  - - N  . . . . .  N }  

x e[ ,~N(f i~s)  = ,~, r,,, > f i~s]  

= E PEr/Ifi>~>t]e[fN(fi~)=A, rN>B~] 
A C _ { - - N  . . . . .  N }  

= P ( T N / f i  N > t ) P ( r N / f i  N > s) 

+ E [P(T; / f iN>t ) - -P(TN/ f lN>t ) ]  
A C { - - N  . . . . .  N }  

A~O 

X P(~N( flu ) = A,  T u > fiN s) 

(3.1a) 

(3.1b) 

PE TN/fiN > s +  t[~N( fiNS) = A ]P[~N( flNS) = A ] 

(3.2) 
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Notice that by construction T N > T A so that 

0 <. e ( rN / f i g  > t)P(TN/fiN > s) - P(TN/fiN > s + t) 

= ~, [ P ( T N / f i N > t ) - - P ( T A / f l N > t ) ]  
A C ( - N  . . . . .  N} 

A~O 

• e ( ~ (  ~,,s) = A, v~, > B,,s) 

<- E [ e ( r~ , /BN> t ) -e ( r ; / ~ , ,> t )  1 
A C ( - - N  . . . . .  N)  

AEEb 

+ P(~( /~s)  ~ E~, r~ > / ~ )  (3.7) 

where for 0 < b < N, 

( , A A [ - b , b ] [  > p )  and ( A : 0 ~ A  
Eb= AC_g:  2 b + l  2 ' ~  )" 

Later on we shall use the fact that Vr > 0 I~(Eb) >/ 1 -- e if b is large 
enough, which follows from 

t , { A :  lim ,A A [ - b , b ] ,  ) 
b o + ~  2b + 1 = p = 1 (3.3) 

(See Ref. 3 or 6 for the proof of the ergodicity of/~.) 
Thus, to prove (3.1) it is enough to show that for all r > 0 there exist 

b = b(e) and N ( 0  such that 

(i) P[~N(I~N S) ~ Eb, T N > t~N S] < s if N > N(e) (3.4) 

and 

(ii) E P[~U(fiN s) = A, T N > fins] 
A~Eb 

• (p[ T,, IB,,  > ~] - e[ r~lz,, > ,])  <~ 

if N t> N(e). 
Since b = b (~) is fixed in (i), it is enough to verify that for all A E E b 

o <. P[ r , , / p , ,  > t] - P[ T ; , / , N  > t I < ~  (3.s) 

if N /> N(E). Notice that the left-hand side in (3.5) is less than or equal to 
P[T N v ~ T~]. We shall show that P[T N r TN A] < e if N >/ N(e), for all 
A ~ E  b. 
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Since A ~ E b we have ]AN [ -  b, b][ > p(2b + 1)/2. On the other side, 
we know that if [A[ = n, 

PIT A-- +or  > P(T[ '*]  = + ~ ] - - F { B : B  N[1,n]~fgJ}~ 1 

as n .a + 0% provided k > X., where [l,n] really means [1,n] N 7/. 
Given r > 0, let us take n(e) such that if n > n(e) then F{B:  B N [1,n] 

4 = O }  > 1 - r see Ref. 5 and take b = b(e) such that fl(2b + 1)/2 > n(c). 
Then 

p iT  An[-b,bl= + o o ]  > 1 - e  (3.6) 

Now, by construction 

U Ivy= 
x E A n [ - b , b ]  

I f x E { - N , . . . , N }  let 

U~ = i n f { t : ~ x ( t )  N { - U , U  } g= O} (3.7) 

with the convention that when this set is empty we set U~(w) = + oo. 
On the other side, by a standard argument for Markov chains 

P[T~= +ooandU~v= +Oo]=O for each x E { - N , . . . , N }  

Thus, setting 

A =  A(A,b,N)~f[ T x= +oo and U~ < +o~ f o r s o m e x  ~ A N [ - b , b ] ]  

we have 

P(A)  > 1 - c (3.8) 

for our previous choice Of b. 
Let us also remark that for each x E { - N ,  . . . .  N} we have (by 

construction) 

~ x ( t ) = ~ ( t )  if t <  U~ and so 

U ~ <  T ~ <  TN A on the set I T  x =  +o o ] ,  if 

Now, 

x E A .  

with A = A(A,b,N),  since P(A c) < e for b = b(~) we need to take care of 
the last term. We have 

O ~ B C { - - N  . . . . .  N }  

�9 P([TNV=T~II[~X(u~)=B]NA) (3.9) 
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where if ~ E A, X(w) is the smallest x in A n [ -  b, b] such that TX(w) = 
+ m and UX(o~) < + m. [Outside A set X(~) = 0 for example, so that it is a 
well-defined random variable.] 

It is very simple to verify that 

~a(t) n [ lX(t),rX(t) ] = ~(t) N [ lX(t),rX(t) l 
i f x ~ A  a n d t <  T x,where  

IX(t) = min~X(/) and rX(t) = m a x ~ X ( t )  

As a consequence we have that for all w E A 

=fN(t) N[lX(t),rX(t)] if t ~< U x 

It  is obvious for ~0 E A that there is one (and only one) of the next two 
equalities which holds: 

I x ( U x ) = - N  or rX(UX)=N 
To fix ideas, let us suppose lx(UXu)= --N. Then 

N 
% 

~A(uX).N[-N, rX(UXN )] =~( Ux)N[ -N , rx (U  x)]" 

Thus using the spatial symmetry of the process we see that the right-hand 
side of (3.9) is bounded above by 

< n A) 

-NEBC_{--N . . . . .  N }  

[el> n(r 

where B = { y E Z : m i n B <  y < m a x B }  and 1 < n (~ )<  N. Also, it is 
known that limt_~ + ~[(x(t)l/t = a, where c~ is a positive constant for almost 
all ~ E [T ~ = + ~] .  (See Ref. 3, Theorem 9.) 

On the other side U~, is greater than a sum of N -  b independent 
exponential random variables with mean 1/X. Thus U~---> + ~ a.s. on 
[T x = + ~ ] ;  on the other end we have that Vm : I~( t) l  > m for all suffi- 
ciently large times a.s. on [T~ = + ~] .  

From this it follows that, given n(c), there exists N~(c) such that if 
N /> Nl(e ) then P([I~X(u~)] <<. n(r n A) < r So, it is enough to show that 
we can choose n(c) large enough so that if B c ( - N  . . . . .  N} with 
- N  ~ B and IBI 1> n(r then there exists N2(r ) such that 



Metastable Behavior of Stochastic Dynamics 625 

Since X > ft, we can take n (e) sufficiently large so that 

P ( [  T [ " ' ( ' ) ]  = + oo])  > 1 - e  

where 7 ~A = i n f { t  > 0 : ~ A ( t ) =  O} and ~(t) is the contact process con- 
structed with arrows to the right only. 

Thus, if B C_ ( - N  . . . . .  N ) ,  - N  ~ B and IBI > n(~), p [ ~ B  = + ~ ]  
> 1 - ~. Let 

VN~ = in f ( t  > 0 : N  E ~ s ( t ) }  

with the convention VNS(~0) = + oe if this set is empty. It is easy to see that 
for such B, on IT e = + oo] we have VN B ~< Tu e and also 

~B(t)=~(t)C_~SN(t ) if t< V~ and 
(3.11) 

(uS( t )= (~uB~( t )  if t >i V~ 

Thus 

, .([ o , ] )  .< ,'(E < + =  33 < .  

which shows (ii) in (3.4). 

Remarks. (1) The reader may check the second line in (3.11) by 
observing the following: first of all 

m a x ~ ( t )  < max~Nn(t), if t < V~ 

and 

i f t <  Tu s. 

[min~N~(t),max~NB(t)] n ~ ( t )  

= [ min ~NB (t), max ~N8 (t) ] n ~ ( t )  

Now, if - N  E B, since maxB < minB c we have 

~(t) n[-N, max~Ns(t)]=~u~c(t)N[-N, max~fv(t)] if t < T ~ .  

But at the time VN B we have max~NB(t) = N so that ~NS(Vff) = esuBCtvSa ~oN I, V N I  

and the statement follows. 
(2) It is clear that when we write ~c and C ~ { - N, . . . ,  N ), what we 

really mean is that the starting configuration is C A ( -  N , . . . ,  N }. 
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Now, let us show (i) in (3.4). We have 

P[ u(flNs) ru > fins] 
<~ PlaN(fiN s) ~ E b , T u > fius, min~u( fluS ) < - N + L, 

m ax~N(flus ) > N -  L] 

+ P[min~N( flNS) >i - N  + L, T u > fix s] 

+ P[max~N( flNS) <<. N -  L, T N > fin s] (3.12) 

we are assuming N > N - L > b. By construction if flus < T N 

~N ( fiN S ) N [ min ~N (BUS)' max ~N ( fiN s ) ] 

= ~(fluS) N [ min ~u (fiNS), max ~N ( fiN s) ] 

Thus the first summand in (3.12) may be bounded above by P[~(flN s) 
q~ Eb]. And, since P[~(flN s) Cs Eb]---)/~(E[) < e, we can find N3(e ) ~ N such 
that 

P [ ~ u ( f l u S ) ~ E b ] < 2 ~  if N >~ N3(c ) 

Finally, we must control P[min~N(flNS ) > - N  + L, T N > fluS], the 
other term in (3.12) being analogous. 

It is easy to see that if t < T u then min~N(t ) > -- N + L if and only if 
min~[_N,+~)(t) > -- N + L. But, from construction ~N(t) C ~[_N,+~)(t) 
for all t>~0. Thus it suffices to show that if min~t_u ,+~)( t ) - - .<-N 
+ L ,  then m i n ~ N ( t ) < - N + L  too, provided t <  T u. In effect, if 
min~t_u,+~)(t ) < - N +  L then there exists a path from some point 
(x,O) E { - N , - N + I  . . . .  } •  to ( y , t ) ~ { - N  . . . . .  - N + L }  
• R+. If x E { -  N . . . . .  N} t heny  E ~u(t), as we wished. Let us consider 

then the case x > N: since, by hypothesis t < T n, i.e., there exists a path 
from (u,0) E { - N  . . . . .  N } •  to ( v , t ) ~ { - N  . . . . .  N ) •  This 
path must meet the one which goes from (x, 0) to (y, t), and thus y ~ ~N(t). 

Consequently, 

P[min~N( flU s) > - N + L, T N > fiN S] 

~< P[min~i -u .+~)(  flu s) > - U + L] 

Let us now take L = L(c) such that 

/~[_N,+,){A C [ - N , + ~ ) f q Z : A  A [ - N , - N + L ] = O }  < e  

[Such L(e) exists if h > ~..] Finally, since ~[_N,+~)(t)---> ~[-N,+oo) weakly, 
as t--) + o~, we have 

P([~ t_N,+oo) ( f lNS)>- -N+Ll )  < 2 e  if N >/ N4(e ) 

thus completing the proof of Eq. (3.1a). 
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Now, owing to the definition of fin and the monotonicity in t of 
PN(TN > tiNt), it is easy to show that 

lim P(TN/f l  N > t) = exp(-- t) (3.13) 
N--~ oo 

Equation (3.13) together with Eq. (3.1b) clearly implies the  result, so that 
we are left with the proof Eq. (3.1b). 

From Eq. (3.2') and from the definition of fix we have that 

g integer n P (TN / fin > n) < exp( -- n) 

Now, since 

s ErN/BN = e(rN/BN > Odt 

it follows from Lebesgue's theorem that 

lim ETN/BN----s ~ lira P(T~/BN > t ) d t = s  ~e- td t=  1 
N---~ ~ N ~ ,  oe 

Remark. The reader should be aware that in the proof of both 
theorems we have used the letters A and B to denote at least two things: A 
denotes a configuration (a subset of ~) and Ah~(t)denotes a time average 
(as in Theorem 3.1). B sometimes denotes a configuration and B ff denotes 
an event. 

Proof of Theorem 3.3. Since T N is a.s. finite, for any positive 
number RN, K N is a well-defined and finite random variable with values on 
N. Moreover, if the R N verify condition (i) above we know, by Theorem 3.2, 
that P(T  N < R u ) o 0  as N o  + oo, i.e., P(K N = 0 ) o 0 .  Let us now assume 
(RN) is a sequence satisfying (i). For e > 0 and f cylindrical given, let 

Then, for any integer m > 1 

P K u > 1, NKN(e )c = 2 P[KN=j ] I  P U BN KN--'J 
0<~ j = l  

>/e[1.< K N.< m ] -  
j = l  

�9 max p [ B N I K N = j ]  ' J  1.<k.<j L 

Now, we can take L = L(e), positive integer such that the support of f is 
contained on [ - N + L, N - L], 

~ [ _ N , + ~ ) { A : A A [ _ N , _ N + L ] = O } <  e for N > L  
411f[f~ 
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On the set 

we have 

[min~x(t  ) < - N  + L, max~N(t ) > N -  L],  

If we let h ( . ) =  Io~,~('); 
t < T  N 

h (~N (t)) = h (~[_ N, + =)(t)) 

So, if k < j 

1 fk~;1)RNf(,(t))dt_ffdl~>e] 

+ 2 P  2 [ I f l l ~ N  N gRu 

We want to show that we can choose RN, m N so that (i) holds and also 

P[ K u <<. mNl---> l 

m~ (maxe(rz) + maxP(F  N) ~ -~0 
k ~ > l  k ) l  x . 3  

where 

f(~N (t)) = f (~(t))  

DN, L = (17 : ~ f-) [ - -  N ,  - N + L] = 0),  then for 

(3.14) 

FN= 1 (k+l)RNf(~( t ) )d t_  fdtz >_~ 
kR N (3A5) 

Fk -- 1)RNh (~[- N, + ~)(t)) dt > -~ 
JkRN 

By construction 

~[_lv,+~)(kR N + t) -- r - k e ~ t  - N, + oo~(t) c_ ~ . A I  - ,~, + ~ ( t )  

where ~s[-N,+ m)(') is the contact process constructed with the Poisson point 
process translated in time by s. More precisely, for each A 

(~( t )  = ( y  ~ Z :there exists a path going up from (x ,s )  to 

( y , s  + t) for some x ~ A}. 

Remark. In formula (3.19) we shall use ( instead of '~[-N,+=) be- 
cause the notation would be too heavy. 

Since h is decreasing, we have 

h(kRN~t_N,+~)(t)) < h(~t_N,+~)(kR N + t)) 
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and so 

_ 1 

CJ (dA)  R~'h(k.~'~(t))dt  (3.t9) 
tt[ - u , + w )  

where in the last step we use that kR~(t) D kRN~ A (t), that h is decreasing and 
that N-~ ,+  ~-) is an invariant measure for the process, 

Now; by Birkhoff theorem the last term on (3.i9) can be made 
arbitrarily close to fhdl~t_N,+~ ) (a.s.), which can be taken very small by 
properly choosing L. 

We have shown that maxk>oP(I~)')-~ 0 when R~,, ~ + ~ ,  Let us now- 
look at F~. 

For this we shall also use a result by Harris and Griffeath (s'6) which 
tells us that for a cylindrical function f, 

- t))dt--> a,s. 
S 

Let us assume for the moment that the cylindrical function f is 
increasing, 

Then, the same argument which gave (3.19)--but for the contact 
process on 7/--allows to write 

R,,,l > -k-/)ol rR .<j at 

_ I f ( k + ' ) ' N f ( ~ ( t ) ) d  t 
-- R-~v Jk&v 

Using the ergodic theorem of Birkhoff, the individual ergodic theorem 
of Harris and Griffeath, and the properties of translation invariance for the 
Poisson point processes, we have if k i> 1 

if R N > s(8'), with s(8') defined by 

P "f(~(t))  dt  - > e < -~  
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and 

,[; 
if s > s(6'). 

Let us define 

j 8' <',< >< <-s  

a(R N ) = max[  P (F  N) + P(I~N)] 
k>! 

Then a(-)  is monotonic decreasing and goes to zero at infinity. We would 
like to find R N and m N satisfying simultaneously 

(a) P[T N <. mNRNI -+ 1 

(b) RN / ETN ~ O 

(c) m2.a(RN)--~O as N---) + m 

Let ~b(N) and r be such that ~(N)  .~ + ~ ,  r  + ~ .  We try 
to define R N = ETN/~(N ) and m N = q0(N)t~(N): with this (i) is immedi- 
ately verified. To satisfy (ii) it will be enough that 

[ ETN 
ep2(N) " a ~ - - ~  ) ---~ 0 

Then, it will be enough to take ~( . )  so that ~2(N)/w -t-~ slower than 
1/a(ETN/ep(N))~p2(N). Now, let us suppose that for our initial choice 
~p2(N). u(ETN/q)(N))+~O. Otherwise the problem is solved). Then, let us 
take ~ such that 

r + oe 

q32(N) �9 a( --(-~1E T N ] --~ 0 

Since a is decreasing ~(N)Za(ETN/r as N--> + oe, and we define 

R N = E T N / ~ ( N  ) and 

m N = ~p(N). t)(N) 

for +(N)  as discussed above. This completes the proof, if f is increasing. 
Same argument holds if f is decreasing. The general case follows since any 
cylindrical function can be written as a finite linear combination of such 
functions. 

Proof of Theorem 3.1. After having proved Theorem 3.2 and 
Theorem 3.3, this result follows, on the same line of Theorem 2.1. [] 
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APPENDIX 

Here we summarize some elementary results which we use. 

L e m m a  A.1. Let (~(t))t~ ~ be a discrete time Markov chain on 
(0,1 . . . .  , N} with transition probabilities given by Q / j =  P ( ( ( t +  1) 
= j  I~( t )=  i), where 

Qi,j = fli if j = i + 1 

=qi  if j = i - 1  

= r i = 1 - ( p i  + qi) if j = i 

with Pi, qi ~ 0 if i = 1 , . . . ,  n - 1, qo = O, PN = O, and p~ + qi + rg = 1. 
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Let Tj = inf(t /> 0:~(t)  = j } .  Then for alln E {1, . . . , N}, 

E j ( T , ) =  E ~ q-z+--1 + 1 q= 
l = j  t90 i = l  Pi Pl i = l  .Hi s = i + l  ITs 

j - - I  i 

E II 
i=1 k = l  qk 

PJ( Tn < To) = n-1 i 

E l i  
i=l k=l qk 

Ej( L ) = E ~ Pi .t_ L ..}_ E 
/ = n + l  qN \ i=l ql i = / + 1  

if j < n  (A1) 

if 1 ~ < j % n  (AI')  

qi \ s= l  q= 

where Ej denotes E(.  I~(O) = j). Similarly for Pj. 

Proof. 
tions. �9 

if j > n  

(A2) 

It is obtained by the well-known method of difference equa- 

L e m m a  A.2. Let ~(t)t~ be an irreducible discrete 
chain, with values on a finite set E. Calling 

= in f{ t> /  1 :~( t )=Xo} 

Then 

Exo E 1~(~(t)) = ~{y}Exo(~) 
t = l  

time Markov 

(A3) 

Proof. We shall show that if f :  E ~ R  

0 
xEE 

But the right-hand side is equal to 
k - I  

f(xo) + 2 2 2 f(x)Pxo(~(k) = Xo ~(s) = x, ~(=') ~ Xo if s '  < k)  
k = l  s = l  x~xo 

= ~ E.of(~(s)) 
s~l 

(A4) 
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Also, the left-hand side is equal to 

Eff(~(t))Exo ~ I~}(~(s)) 
x ~ E  s = l  

T 

=exS: 
o 

s ~ l  

=exo  
u ~ l  

because 

E~(s) f(~(t)) 

f(~(t + s)) 

~+t 

Y u 1 

f(~(u)) 

~'+t t 

Exo ~, f(((u)) = E~o ~ f(~(u)) 

This proves (A4) and (A3) follows immediately. �9 

- N  Lemma A3. Let us consider the process ~'i~(N) of Section 2. Then, for 
- - N  T~,(N)j,(N) as defined in Section 2, we have 

E ( -  N k ec(k+l)N3/4 
Til(N>,il(N)) 

for all k I> l, and some constant c. 

Proof. It can be obtained by the same method used in Lemma A1. 
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